Artificial dispersion via high-order homogenization: magnetoelectric coupling and magnetism from dielectric layers
نویسندگان
چکیده
We investigate a high-order homogenization (HOH) algorithm for periodic multi-layered stacks. The mathematical tool of choice is a transfer matrix method. Expressions for effective permeability, permittivity and magnetoelectric coupling are explored by frequency power expansions. On the physical side, this HOH uncovers a magnetoelectric coupling effect (odd-order approximation) and artificial magnetism (even-order approximation) in moderate contrast photonic crystals. Comparing the effective parameters' expressions of a stack with three layers against that of a stack with two layers, we note that the magnetoelectric coupling effect vanishes while the artificial magnetism can still be achieved in a centre-symmetric periodic structure. Furthermore, we numerically check the effective parameters through the dispersion law and transmission property of a stack with two dielectric layers against that of an effective bianisotropic medium: they are in good agreement throughout the low-frequency (acoustic) band until the first stop band, where the analyticity of the logarithm function of the transfer matrix ([Formula: see text]) breaks down.
منابع مشابه
Electric control of magnetism at the Fe/BaTiO3 interface
Interfacial magnetoelectric coupling is a viable path to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO₃ system, only tiny changes of the interfacial Fe magnetic moment upon reversal of the BaTiO₃ dielectric polarization have been predicted so far. Here, by using X-ray magnetic circular dichroism in combination with high-resolution electr...
متن کاملNonasymptotic homogenization of periodic electromagnetic structures: Uncertainty principles
We show that artificial magnetism of periodic dielectric or metal/dielectric structures has limitations and is subject to at least two “uncertainty principles.” First, the stronger the magnetic response (the deviation of the effective permeability tensor from identity), the less accurate (“certain”) the predictions of any homogeneous model. Second, if the magnetic response is strong, then homog...
متن کاملAn effective model of magnetoelectricity in multiferroics RMn2O5
An effective model is developed to explain the phase diagram and the mechanism of magnetoelectric coupling in multiferroics, RMn2O5. We show that the nature of magnetoelectric coupling in RMn2O5 is a coupling between two Ising-type orders, namely, the ferroelectric order in the b-axis, and the.coupled magnetic order between two frustrated antiferromagnetic chains. The frustrated magnetic struct...
متن کاملDielectric multilayer waveguides for TE and TM mode matching
Abstract. We analyse theoretically for the first time to our knowledge the perfect phase matching of guided TE and TM modes with a multilayer waveguide composed of linear isotropic dielectric materials. Alongside strict investigation into dispersion relations for multilayer systems, we give an explicit qualitative explanation for the phenomenon of mode matching on the basis of the standard one-...
متن کاملElectromagnetic Homogenization: the Uncertainty Principle and Its Numerical Verification
The effective permeability of electromagnetic metamaterials can deviate significantly from unity at high frequencies – an intriguing property not available in natural materials. However, we show both analytically and numerically that this artificial magnetism has limitations: the stronger the magnetic response, the less accurate the homogenization. New computational aspects of the paper include...
متن کامل